An Adaptive CSP and Clustering Classification for Online Motor Imagery EEG
نویسندگان
چکیده
منابع مشابه
Classification of EEG-based motor imagery BCI by using ECOC
AbstractAccuracy in identifying the subjects’ intentions for moving their different limbs from EEG signals is regarded as an important factor in the studies related to BCI. In fact, the complexity of motor-imagination and low amount of signal-to-noise ratio for EEG signal makes this identification as a difficult task. In order to overcome these complexities, many techniques such as variou...
متن کاملNonnegative Matrix Factorization for Motor Imagery EEG Classification
In this paper, we present a method of feature extraction for motor imagery single trial EEG classification, where we exploit nonnegative matrix factorization (NMF) to select discriminative features in the time-frequency representation of EEG. Experimental results with motor imagery EEG data in BCI competition 2003, show that the method indeed finds meaningful EEG features automatically, while s...
متن کاملMulticlass Posterior Probability Twin SVM for Motor Imagery EEG Classification
Motor imagery electroencephalography is widely used in the brain-computer interface systems. Due to inherent characteristics of electroencephalography signals, accurate and real-time multiclass classification is always challenging. In order to solve this problem, a multiclass posterior probability solution for twin SVM is proposed by the ranking continuous output and pairwise coupling in this p...
متن کاملA novel method for motor imagery EEG adaptive classification based biomimetic pattern recognition
The real on-line BCI is indeed a hotspot at present whose performance however is limited by the problems of non-stationary etc. In this paper, a novel method for the adaptive classification of motor imagery EEG data based Biomimetic Pattern Recognition (BPR) through introducing three adaptive operators is proposed. Considering that the large amounts of labeled samples are difficult to get in th...
متن کاملA Review on Body Movement Classification Using Motor Imagery EEG
Imagination of various limb movements for patient suffering from several physical hindrances, Brain computer interfaces (BCI) offers analysis of motor imagery EEG which can be shown a new way of communication. Motor imagery data for body movement classification like left hand, right hand, toe, and tongue movement are available on Physionet ATM or BCI competition datasetIII. Using different Feat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2020
ISSN: 2169-3536
DOI: 10.1109/access.2020.3016700